MTH 201: Multivariable Calculus and Differential Equations

Homework IV

(Due 27/09)

- 1. Find the local maximum and minimum and saddle points of the following functions.
 - (a) $f(x,y) = x^4 + y^4 4xy + 2$.
 - (b) $f(x,y) = e^x \cos y$.
 - (c) $f(x,y) = x^2 + y^2 + \frac{1}{x^2y^2}$.
- 2. Find the absolute maximum and minimum values values of f on the set D.
 - (a) $f(x,y) = x^2 + y^2 + x^2y + 4$, $D = \{(x,y) \mid |x| \le 1, |y| \le 1\}$.
 - (b) $f(x,y) = 2x^3 + y^4$, $D = \{(x,y) \mid x^2 + y^2 \le 1\}$.
 - (c) $f(x,y) = xy^2$, $D = \{(x,y) | x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$.
- 3. Find the shortest distance between the point P and the surface S.
 - (a) P = (1,2,3), $S = \{(x,y,z) | x y + z = 4\}.$
 - (b) P = (0, 0, 0), $S = \{(x, y, z) | z^2 = xy + 1\}.$
- 4. Find the volume of the largest rectangular box with edges parallel to the axes that can be inscribed in the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

- 5. Find the dimensions of a rectangular box of largest volume such that the sum of the lengths of its 12 edges is the constant c.
- 6. Use Lagrange multipliers to find the maximum and minimum values of the given functions subject to the given constraints.
 - (a) $f(x,y) = x^2 + y^2$; $x^4 + y^4 = 1$
 - (b) $f(x, y, z) = x^2 y^2 z^2$; $x^2 + 2y^2 + 3z^2 = 6$.
 - (c) $f(x, y, z) = 3x y 3z; x + y z = 0, x^2 + 2z^2 = 1.$
 - (d) $f(x_1, \ldots, x_n) = x_1 + \ldots + x_n; x_1^2 + \ldots + x_n^2 = 1.$
- 7. Use Lagrange multipliers to prove that the triangle with maximum area that has a given perimeter p is equilateral.
- 8. Find the highest and lowest points on the ellipse, which is the intersection of the plane 4x 3y + 8z = 5 and the cone $z^2 = x^2 + y^2$.
- 9. (a) Find the maximum value of

$$f(x_1,\ldots,x_n) = \sqrt[n]{x_1x_2\ldots x_n},$$

where x_1, x_2, \ldots, x_n are positive numbers and $x_1 + \ldots + x_n = c$.

(b) Deduce form part (a) that if x_1, \ldots, x_n are positive numbers, then

$$\sqrt[n]{x_1x_2\dots x_n} \le \frac{x_1 + \dots + x_n}{n}$$

- 10. The two equations x + y = uv and xy = u v determine x and v as functions of u and y say x = X(u, y) and v = V(u, y). Show that $\frac{\partial X}{\partial u} = \frac{u+v}{1+yu}$.
- 11. The equation f(y/x, z/x) = 0 defines z implicitly as a function of x and y, say z = g(x, y). Show that

$$x\frac{\partial g}{\partial x} + y\frac{\partial g}{\partial y} = g(x,y)$$

at those points at which $D_2 f(y/x, g(x, y)/x) \neq 0$.

- 12. The equation $\sin(x+y) + \sin(y+z) = 1$ determines z implicitly as a function of x and y, say z = f(x, y). Compute $D_{1,2}f$ in terms of x, y, and z.
- 13. The three equations F(u, v) = 0, u = xy, and $v = \sqrt{x^2 + y^2}$ define a surface in \mathbb{R}^3 . Find a normal vector to this surface at $(1, 1, \sqrt{3})$ if it is known that $D_1F(1, 2) = 1$ and $D_2F(1, 2) = 2$.